Introduction	Related works	Surface parametrization and texturing	Improving the textures	Experimental Results	Conclusions

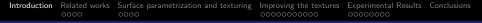
Texturing and Inpainting a Complete Tubular 3D Object Reconstructed from Partial Views

Julien Fayer^{*a,b*}, Bastien Durix^{*a*}, Simone Gasparini^{*a*}, Geraldine Morin^{*a*}

^aIRIT, University of Toulouse ^bSAS InnerSense

June 7, 2018

<□ > < @ > < ≧ > < ≧ > ≧ > < ≥ の Q · 1/41



Introduction: context

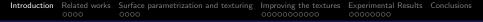
• Texturing a 3D model generated from a limited set of images

Figure: Reconstruction with the open-source state-of-the-art MVS pipeline AliceVision [AliceVision, 2017] with 4 images (right)

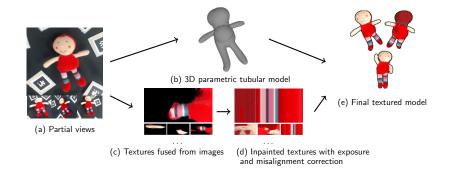
Introduction: context

• Texturing a 3D model generated from a limited set of images

Figure: Reconstruction with the open-source state-of-the-art MVS pipeline AliceVision [AliceVision, 2017] with 30 images (right)



Introduction: our proposal


• Goal: reconstruct a complete textured 3D object

• Hypothesis: object represented by a set of canal surfaces (*branches*) [Durix et al., 2016]

Introduction: our pipeline

Figure: Pipeline

Introduction Related wo	rks Surface parametrization and texturi	ng Improving the textures	Experimental Results	Conclusions

Outlines

Related works

- Texturing 3D models generated by MVS
- Texturing 3D models generated by other methods
- 2 Surface parametrization and texturing
 - Surface parametrization
 - Texturing a branch
- Improving the textures
 - Exposure improvement
 - Alignment improvement
 - Texture completion
- **Experimental Results**
 - Results
 - I imitations

1 Related works

- Texturing 3D models generated by MVS
- Texturing 3D models generated by other methods

2 Surface parametrization and texturing

- Surface parametrization
- Texturing a branch

Improving the textures

- Exposure improvement
- Alignment improvement
- Texture completion

Experimental Results

- Results
- Limitations

- \bullet Only locally optimal \rightarrow visible artifacts and discontinuities seams
- Solutions: Blending the images, labeling [Sinha et al., 2008], energy minimization [Waechter et al., 2014]

Figure: Solution of [Waechter et al., 2014]

<□> <@> < E> < E> E のQで 7/41

- Weighted blending of a subset of source images [Callieri et al., 2008] → Suffering of loss of quality and of details + generating artifacts
- Solution: patch based synthesis [Bi et al., 2017]

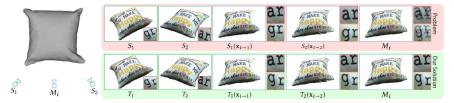


Figure: Patch based synthesis by [Bi et al., 2017]

Other reconstruction methods and texturing

- Shape from silhouette ([Carlos and Schmitt, 2004]): no parameterization \rightarrow difficult to texture
- Reconstruction of tubular shapes:
 - 3D model from a single image with user interaction: texture recovered by back-projection [Chen et al., 2013]
 - Reconstruction by skeletons [Durix et al., 2016]: camera and geometry alignments issues

Figure: Results from [Chen et al., 2013]

Other reconstruction methods and texturing

- Advantage: complete reconstruction from partial views
- Contribution: texture reconstructed 3D model including occluded parts

Figure: Estimated 3D skeleton [Durix et al., 2016]

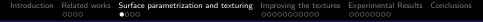
Introduction	Related works	Surface parametrization and texturing	Improving the textures	Experimental Results	Conclusions

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≤ ≧ り ♀ 11/41

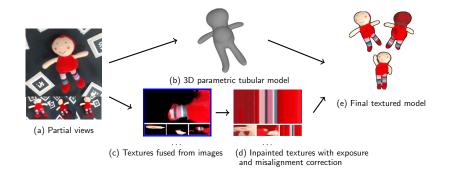
1 Related works

- Texturing 3D models generated by MVS
- Texturing 3D models generated by other methods

2 Surface parametrization and texturing


- Surface parametrization
- Texturing a branch

Improving the textures


- Exposure improvement
- Alignment improvement
- Texture completion

Experimental Results

- Results
- Limitations

Surface parametrization

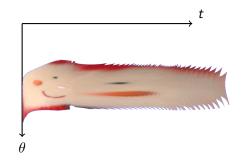
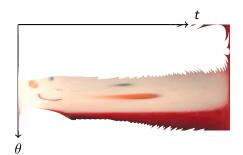
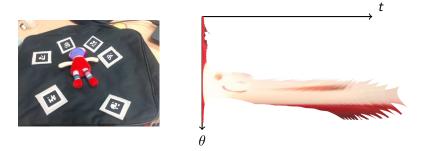
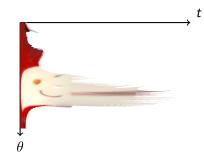


Figure: Pipeline

- Create a reference image texture I_b for each branch b
- Represented by a parametric canal surface $S(t, \theta)$ where $(t, \theta) \in A \times [0, 2\pi]$
- Occlusions handled by an adhoc z-buffer like method




- Create a reference image texture I_b for each branch b
- Represented by a parametric canal surface $S(t, \theta)$ where $(t, \theta) \in A \times [0, 2\pi]$
- Occlusions handled by an adhoc z-buffer like method


- Create a reference image texture I_b for each branch b
- Represented by a parametric canal surface $S(t, \theta)$ where $(t, \theta) \in A \times [0, 2\pi]$
- Occlusions handled by an adhoc z-buffer like method

- Create a reference image texture I_b for each branch b
- Represented by a parametric canal surface $S(t, \theta)$ where $(t, \theta) \in A \times [0, 2\pi]$
- Occlusions handled by an adhoc z-buffer like method

Texturing a branch from multiples images

- Apply the texture of the best image of a set V of images I_i
- Based on a radiometric confidence criterion of our previous work [Fayer et al., 2018]

Figure: Confidence of a reference image

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Texturing a branch from multiples images

- Apply the texture of the best image of a set V of images I_i
- Based on a radiometric confidence criterion of our previous work [Fayer et al., 2018]

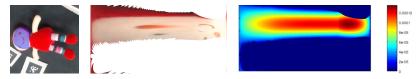


Figure: Confidence of a reference image

< □ > < @ > < E > < E > E の < ○ 14/41

Texturing a branch from multiple images

- Each image I_i has a confidence map C_i
- For each pixel p of the final reference image I_b

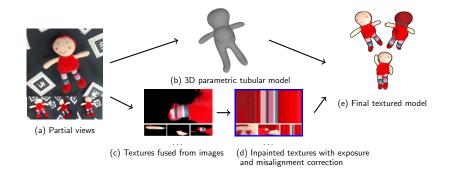
$$I_b(p) = I_i(p)$$
 $i = argmax_i(C_i(p))$

Figure: Merged reference image

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 16/41

1 Related works

- Texturing 3D models generated by MVS
- Texturing 3D models generated by other methods
- 2 Surface parametrization and texturing
 - Surface parametrization
 - Texturing a branch


Improving the textures

- Exposure improvement
- Alignment improvement
- Texture completion

4 Experimental Results

- Results
- Limitations

Improving the textures

Figure: Pipeline

Improving the textures

- Remaining issues :
 - Exposure issues
 - Alignment issues
 - Completing the texture

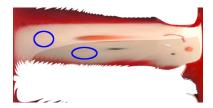
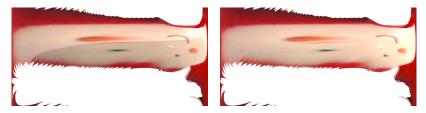


Figure: Exposure differences between two reference images

Improving the exposure


- Inspired from [Zhang et al., 2016]
- Each pixel p of a reference image I_b has a radiance value r(p)
- Each image I_i has a exposure coefficient α_i
- Find (α_i, r(p)) for each pixel p and each image I_i^b generated from I_i ie:

$$\min_{\alpha_i, r(p)} \sum_{i, p} \left(I_i^b(p) - \alpha_i r(p) \right)^2$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ● ○ Q ○ 19/41

Introduction Related works Surface parametrization and texturing Improving the textures 0000 Experimental Results Conclusions 000000000

Improving the exposure

Figure: Exposure correction example

<□ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 20/41

Improving the alignment

• Remaining issues :

- Exposure issues
- Alignment issues
- Completing the texture

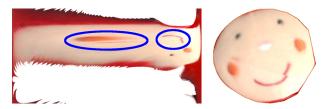


Figure: Alignment issues of merged reference image

Improving the alignment

- Inspired from [Arikan et al., 2014]
- Minimize the following energy:

$$E = \sum_{p \in I_b} E_d(p, l) + \lambda \sum_{(p_1, p_2) \in \mathcal{N}} E_r(p_1, p_2, l_1, l_2)$$

Figure: Labels map before and after the minimization

Improving alignments

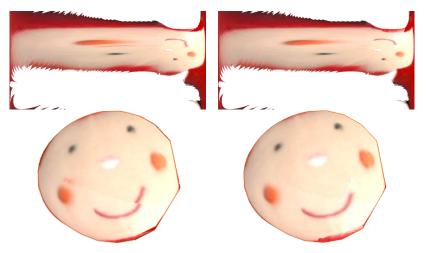


Figure: Alignment correction example

Completing the texture

• Remaining issues :

- Exposure issues
- Alignment issues
- Completing the texture

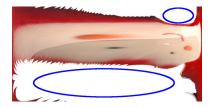


Figure: Missing regions in reference image

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Two kinds of textures:
 - Regular textures
 - Circular textures: color of the pixel $p(t, \theta)$ is independent of θ
- Apply two completion methods according to the texture type

Figure: Examples of two textures: regular (left) and circular (right)

Inpainting: state-of-the-art

 Diffusion methods : Partial Differential Equations (PDEs) [Chan and Shen, 2001], Total Variation (TV)

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ^Q 26/41

Figure: Diffusion method example

Inpainting: state-of-the-art

• Patch based methods: PatchMatch [Barnes et al., 2009], statistical analysis [He and Sun, 2012]

Figure: Patch based method example

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Create a structure image
- Generate a new texture image with the structure image and the partial texture image

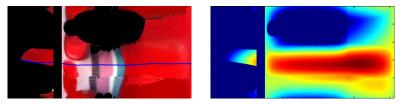
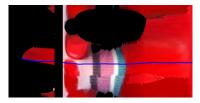



Figure: Circular texture completion

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Create a structure image
- Generate a new texture image with the structure image and the partial texture image

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Figure: Circular texture completion

- Create a structure image
- Generate a new texture image with the structure image and the partial texture image

Figure: Circular texture completion

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Create a structure image
- Generate a new texture image with the structure image and the partial texture image

Figure: Circular texture completion

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < 母 > < E > < E > E の Q C 29/41

1 Related works

- Texturing 3D models generated by MVS
- Texturing 3D models generated by other methods

2 Surface parametrization and texturing

- Surface parametrization
- Texturing a branch

Improving the textures

- Exposure improvement
- Alignment improvement
- Texture completion

4 Experimental Results

- Results
- Limitations

Introduction	Related works	Surface parametrization and texturing	Improving the textures	Experimental Results	Conclusions
				●0000000	

Context

- Dataset: 5 plushes, 3 to 5 photos for each plush
 - https://github.com/Ibujah/dataset_plushes
- Good candidates: isotropic material, circular surfaces around the direction of the main axis
- Results website:

https://sketchfab.com/jfayer/collections

Figure: Input plushes

Introduction R	elated works	Surface parametrization and texturing	Improving the textures	Experimental Results	Conclusions
				0000000	

Figure: 3D models results

<ロト < 回 > < 三 > < 三 > 、 三 の へ C 31/41

Introduction Rela	ated works Surface pa	rametrization and texturing	Improving the textures	Experimental Results	Conclusions
				0000000	

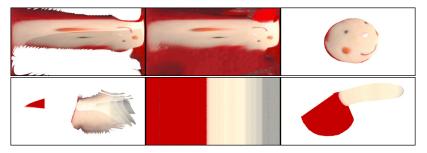


Figure: Mesh completion

<ロ > < 部 > < 書 > < 言 > う < つ < 32/41

Introduction	Related works	Surface parametrization and texturing	Improving the textures	Experimental Results	Conclusions
				0000000	

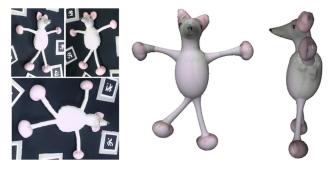


Figure: 3D models results

<ロ ト < 回 ト < 三 ト < 三 ト 三 の へ C 33/41

Introduction Related works	Surface parametrization and texturing	Improving the textures	Experimental Results	Conclusions
			0000000	

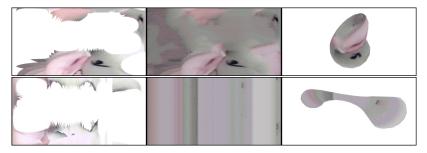


Figure: Mesh completion

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の へ つ 34/41

Introduction	Related works	Surface parametrization and texturing	Improving the textures	Experimental Results	Conclusions
				00000000	

Figure: 3D models results

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 35/41

Introduction Related wor	s Surface parametrization and texturing	Improving the textures	Experimental Results	Conclusions
			00000000	

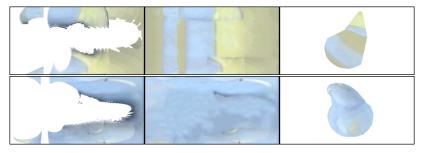


Figure: Mesh completion

<ロト < 回 ト < 三 ト < 三 ト 三 の へ C 36/41

Introduction	Related works	Surface parametrization and texturing	Improving the textures	Experimental Results	Conclusions
				0000000	

Limitations

Figure: Limitations example

Introduction R	Related works	Surface parametrization and texturing	Improving the textures	Experimental Results	Conclusions

Conclusions

- Requiring only few images
- Texturing a complete 3D object
- Future directions:
 - Classify the texture into circular or regular
 - Generalize the work on exposure to smoothing of color

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Handle shiny surfaces

Introduction Related works Surface parametrization and texturing Improving the textures Experimental Results Conclusions

AliceVision (2017).

Photogrammetric Computer Vision Framework.

Arikan, M., Preiner, R., Scheiblauer, C., Jeschke, S., and Wimmer, M. (2014).

Large-scale point-cloud visualization through localized textured surface reconstruction. *IEEE Transactions on Visualization and Computer Graphics*, 20(9):1280–1292.

Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. B. (2009).PatchMatch: A randomized correspondence algorithm for structural image editing.ACM Transactions on Graphics (Proc. SIGGRAPH), 28(3).

Bi, S., Kalantari, N. K., and Ramamoorthi, R. (2017). Patch-based optimization for image-based texture mapping. ACM Transactions on Graphics, 36(4):1–11.

Callieri, M., Cignoni, P., Corsini, M., and Scopigno, R. (2008).

Masked photo blending: Mapping dense photographic data set on high-resolution sampled 3D models. *Computers & Graphics*, 32(4):464–473.

Carlos, H. and Schmitt, F. (2004).

Silhouette and stereo fusion for 3D object modeling. Computer Vision and Image Understanding, 96(3):367–392.

Chan, T. F. and Shen, J. (2001).

Nontexture inpainting by curvature-driven diffusions. Journal of Visual Communication and Image Representation, 12(4):436 – 449.

Chen, T., Zhu, Z., Shamir, A., Hu, S.-M., and Cohen-Or, D. (2013).

3sweep: Extracting editable objects from a single photo. ACM Trans. Graph., 32(6):195:1–195:10.

Durix, B., Morin, G., Chambon, S., Roudet, C., and Garnier, L. (2016).

Skeleton-based Multiview Reconstruction.

In Proceedings of the IEEE International Conference on Image Processing, pages_4047-44

かくで 38/41

Introduction Related works Surface parametrization and texturing Improving the textures Experimental Results Conclusions

Fayer, J., Morin, G., Gasparini, S., Daisy, M., and Coudrin, B. (2018).

Radiometric confidence criterion for patch-based inpainting.

In Proceedings of the International Conference on Pattern Recognition (ICPR 2018). to appear.

He, K. and Sun, J. (2012).

Statistics of patch offsets for image completion.

In Proceedings of the 12th European Conference on Computer Vision - Volume Part II, ECCV'12, pages 16–29, Berlin, Heidelberg. Springer-Verlag.

Sinha, S. N., Steedly, D., Szeliski, R., Agrawala, M., and Pollefeys, M. (2008).

Interactive 3d architectural modeling from unordered photo collections. ACM Trans. Graph., 27(5):159:1–159:10.

Waechter, M., Moehrle, N., and Goesele, M. (2014).

Let there be color! Large-scale texturing of 3D reconstructions. In Proceedings of the 2014 European Conference on Computer Vision (ECCV 2014), volume 8693 LNCS, pages 836–850.

< □ > < 母 > < 臣 > < 臣 > 臣 → ○ < 39/41

Zhang, E., Cohen, M. F., and Curless, B. (2016).

Emptying, refurnishing, and relighting indoor spaces. ACM Trans. Graph., 35(6):174:1-174:14.

Annexe: AliceVision Results

Figure: AliceVision [AliceVision, 2017] results

Annexe: AliceVision Results

Figure: AliceVision [AliceVision, 2017] results

Introduction Related works Surface parametrization and texturing Improving the textures concentration and texturing concentration and textures concentrating concentrating concentration and textures concentratin

Annexe: AliceVision Results

Figure: AliceVision [AliceVision, 2017] results

Annexe: AliceVision Results

Figure: AliceVision [AliceVision, 2017] results

Annexe: Confidence criterion

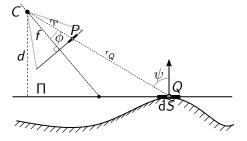


Figure: Confidence criterion applied to a viewpoint C and to a surface dS with tangent plane Π at point Q.

<ロト < 母 ト < 臣 ト < 臣 ト 王 の へ で 40/41

Introduction Related works Surface parametrization and texturing Improving the textures Experimental Results Conclusions

Annexe: Computation times

Plush	Blue	Mouse	Red	Bear	Rabbit
Perspective skeleton estimation	1.7 s	1.4 s	1.7 s	1.8 s	1.8 s
Triangulation	1.3 s	2.4 s	1.3 s	1.4 s	1.6 s
Z-buffering (CPU)	29 s	39 s	27 s	26 s	28 s
Texture extraction from images	9.9 s	15.1 s	9.6 s	8.4 s	9.8 s
Exposure correction	76 s	120 s	71 s	78 s	20 s
Registration correction	88 s	137 s	145 s	106 s	153 s
Texture completion	58 s	128 s	89 s	51 s	57 s
Total	264 s	443 s	345 s	273 s	271 s

Table: Computation times for some plushes

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の < ⊂ 41/41